Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| 20 | 21 | 22 | 23 | 24 | 25 | 26 |
| 27 | 28 | 29 | 30 | 31 |
Tags
- lightweightmmm
- 프로그래머를 위한 선형대수 #선형대수 #고유값 #고유벡터 #야코비 회전법 #QR법 #하우스홀더반사 #행렬회전
- 프로그래머를 위한 선형대수 #선형대수 #LU분해
- Marketing Mix Modeling
- 미적분
- bayesian inference
- 미적분 #사인과 코사인의 도함수
- 미적분 #평균값 정리 #로피탈의 정리 #접선의 방정식
- 미적분 #접선의 방정식 #최적화 #뉴턴법 #뉴턴-랩슨법
- 프로그래머를 위한 선형대수 #선형대수 #고유분해 #고윳값 #고유벡터
- bayesian
- Optimization
- mmm
- 시계열분석 #Time-Series Analysis #이상탐지 #Anomaly Detection #Spectral Residual #CNN #SR-CNN
- 프로그래머를 위한 선형대수 #선형대수 #고유값 #고유벡터 #고유분해
- Media Mix Modeling
- 수리통계
- 프로그래머를 위한 선형대수 #선형대수 #행렬계산
Archives
- Today
- Total
목록2023/08/03 (1)
문과생 네버랜드의 데이터 창고
43. 회귀분석
회귀분석이란 1) 회귀 분석이란 ${(1)}$ 한 변수의 기댓값과 다른 변수(들)사이의 관계를 정의하는 모형식을 정의하는 절차를 회귀분석이라고 한다. -. 기댓값은 해당 확률변수가 모수 공간에서 가질것으로 기대되는 일반화된 평균값이기 때문에, 기댓값을 구한다는 것은 지금 당장 실현된 표본값을 너머 일반적으로 그럴것이다라는 예측값을 생산할 수 있게 된다. -. 조건부 기댓값을 정의하기 위해 다음의 모형식을 정의하게 되는데, 이를 바로 회귀식이라고 한다 $$E(Y) = f(x_{i}, \theta) + e_{i}$$ 이 때, $e_{i}$는 잔차(Error)를 의미하고, $x_{i}$는 실현된 표본값을 의미한다.(확률변수가 아님에 유의한다) ${(2)}$ 단변량 선형회귀분석 -. 이번 포스트에서 살펴볼 내용..
수리통계
2023. 8. 3. 20:11