Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 |
Tags
- 미적분 #접선의 방정식 #최적화 #뉴턴법 #뉴턴-랩슨법
- 미적분
- 시계열분석 #Time-Series Analysis #이상탐지 #Anomaly Detection #Spectral Residual #CNN #SR-CNN
- Media Mix Modeling
- 프로그래머를 위한 선형대수 #선형대수 #고유분해 #고윳값 #고유벡터
- lightweightmmm
- mmm
- 수리통계
- 프로그래머를 위한 선형대수 #선형대수 #행렬계산
- 미적분 #평균값 정리 #로피탈의 정리 #접선의 방정식
- Marketing Mix Modeling
- Optimization
- 프로그래머를 위한 선형대수 #선형대수 #고유값 #고유벡터 #고유분해
- 프로그래머를 위한 선형대수 #선형대수 #고유값 #고유벡터 #야코비 회전법 #QR법 #하우스홀더반사 #행렬회전
- 미적분 #사인과 코사인의 도함수
- bayesian inference
- bayesian
- 프로그래머를 위한 선형대수 #선형대수 #LU분해
Archives
- Today
- Total
목록2023/07/31 (1)
문과생 네버랜드의 데이터 창고
39-1. 비중심 카이스퀘어 분포와 F분포
비중심 카이스퀘어 분포 1) 카이제곱 분포와의 비교 ${(1)}$ 앞서, 카이제곱 분포를 살펴보며 $N(\mu, \sigma^{2})$을 따르는 확률변수들의 2차형식 $$V = \frac{(X - \mu)^{2}}{\sigma^{2}}$$은 $x^{2}(1)$을 따름을 보였다. ${(2)}$ 이는 $\mu$라는 평균을 갖는 확률변수 X를 $N(0,1)$을 따르는 표준정규분포로 변환한 후 그 제곱을 취한 것이라 볼 수 있다. ${(3)}$ 이제, 자연스럽게 들 수 있는 의문은 다음과 같다. -. 그렇다면, 평균을 0으로 스케일하지 않은, 즉 다음과 같은 확률변수는 어떤 분포를 따를 것인가? $$V' = \frac{(X)^{2}}{\sigma^{2}}$$ -. 위 변환확률변수는 굳이 표현하자면 $N(\mu,..
수리통계
2023. 7. 31. 18:46