Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | ||||
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- 미적분 #접선의 방정식 #최적화 #뉴턴법 #뉴턴-랩슨법
- lightweightmmm
- 프로그래머를 위한 선형대수 #선형대수 #고유값 #고유벡터 #고유분해
- Media Mix Modeling
- Optimization
- 미적분 #사인과 코사인의 도함수
- 프로그래머를 위한 선형대수 #선형대수 #LU분해
- 프로그래머를 위한 선형대수 #선형대수 #고유값 #고유벡터 #야코비 회전법 #QR법 #하우스홀더반사 #행렬회전
- 미적분 #평균값 정리 #로피탈의 정리 #접선의 방정식
- mmm
- 시계열분석 #Time-Series Analysis #이상탐지 #Anomaly Detection #Spectral Residual #CNN #SR-CNN
- bayesian inference
- 프로그래머를 위한 선형대수 #선형대수 #행렬계산
- 미적분
- bayesian
- 프로그래머를 위한 선형대수 #선형대수 #고유분해 #고윳값 #고유벡터
- 수리통계
- Marketing Mix Modeling
Archives
- Today
- Total
목록2023/06/20 (1)
문과생 네버랜드의 데이터 창고
15-1 다변량 정규분포
표준 다변량 정규분포 1) 표준 다변량 정규분포의 pdf ${(1)}$ $z_{1}, ..., z_{n}$을 i.i.d이고 $N(0,1)$을 따르는 확률변수라고 할 때 -. 이 확률표본들의 확률벡터 Z 의 결합확률밀도함수는 i.i.d에서의 조건에 따라 다음과 같이 나타낼 수 있다. $f_{z}(Z) = \prod_{i = 1}^{n} \frac{1}{\sqrt{2\pi}} exp(-\frac{z^{2}}{2}) = (\frac{1}{2\pi})^{\frac{n}{2}}exp(-\frac{1}{2}\sum_{i=1}^{n}z_{i}^{2})$ -. 위 식을 벡터형식으로 고쳐서 다시 표현하면 아래와 같이 쓸 수 있다. $(\frac{1}{2\pi})^{\frac{n}{2}}exp(-\frac{1}{2}z^{..
수리통계
2023. 6. 20. 20:48